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Abstract A set of two coupled nonlinear SchrBdinger equations (CNLS) describes the two 
mode propagation in an optical fibre. The Painlevesingularity structure analysis singles out 
two integiable parametric choices, including the Manakov model. Using the results of 
Painle+ analysis, we succeed in Hirota bilinearizing the CNLS equations in both the anomal- 
ous as well as normal dispersion regions for the integrable cases. Solving the Hirota bilinear 
equations, bright and dark %soliton solutions are explicitly obtained. 

1. Introduction 

The interaction of two optical modes 41 and qz of shorter wavelengths or longer charac- 
teristic lengths of the envelope in a fibre is governed by a system of CNLS equations 
[l-91 written in dimensionless form as 

iql, +clqlt,+2(alql 12+p t q2V)qE = 0 

iqb + ~zq2,~+2(plql I z +  y1q2?)q2=0 

( 1 4  

(1b) 

(and their complex conjugates), where c1, q, a, p and y are real parameters. The 
variables x and t are the normalized distance and time, the parameter ,!3 is the cross- 
coupling coefficient and the signum functions cI and cz depend on the signs of the group 
velocity dispersion (GVD) in each mode, that is c= +I for anomalous GVD and e=-1 
for normal GVD (without loss of generality). 

Sahadevan et a1 [lo] established that the system (1) possesses Painlev& (P) property 
for the two specific parametric choices 

c1=c* a=p=y (2) 

C] = -c2 (3) 

and are thus integrable in these cases. In fact, Zakharov and Schulman [ l l ]  earlier 
established the existance of ‘motion invariants’ for these cases. The P-property for the 
system (I)  for choices (2) and ( 3 )  implies that the solutions of the system (1) must be 
single-valued about the noncharacteristic movable singular manifold 6 (x, t )  so that 
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locally the Laurent expansion can be given by 
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m 
qdx, t ) = P  c qdx, f)dJ’(X, 

P O  
i= 1,2 (4) 

(and similar but independent expressions for qi*(x, t ) ) ,  where q&, t )  are analytic 
functions of x and t .  The detailed analysis shows that the Laurent series for ql, q2, 
q: and qf contain eight arbitrary functions, including the singular manifold #(x, I), 
without the introduction of movable critical manifolds as expected from the nature of 
equations (I), for the above two specific choices (2) and (3). The Laurent expansion 
can also be profitably used to construct the Backlund transformation (BT) and Hirota 
bilinearization [12,13]. In this paper we explicitly obtain the bright and dark N-soliton 
solutions for the choice (2) of the system (1). The bright one-soliton form agrees with 
the result derivable from the inverse scattering method [3] and a special case of the 
dark one-soliton agrees with the form of the solution obtained using an ansatz by 
Kivshar and Turitsyn [8], while that of the remaining higher-order bright and dark 
N-solitons are reported for the first time using the relation between P-analysis and the 
Hirota technique. Moreover, the solutions for the choice (3) of the equations (1) are 
also found for the first time. 

2. Bright solitons 

The system ( I )  under the parametric restriction (2) is nothing but the well known 
integrable model proposed by Manakov [14]. Kaup and Malomed [3] have recently 
briefly discussed its role in nonlinear optics using its one-soliton solution obtained from 
the inverse scattering method. They have pointed out that the Manakov model, besides 
the birefringence property, covers many other physical phenomena such as soliton 
trapping and daughter wave (‘shadow’) formation in optical fibres. The parametric 
choice (2), namely a = P = y = p  (say), cl=c2=+l,  corresponds to theanomalous GVD 
region, where bright solitons can exist, so that the system (1) becomes 

iqlx+ qIn+ 2p (1q112+ 1qd2)q1 = o 
iqz, + qZn + 2p (t qIV+ I qd2)q2= 0. 

( 5 4  

(W 
Now by truncating the Laurent expansions (4) up to the constant-level term, that is, 
qV=O, j g 2 ,  we can formally write the BT as 

qi= 4iOP -t qil i= 1,2 (6) 
where the pairs (q;, qil) are solutions of (5). In order to construct the Hirota bilinear 
form [lS, 161, we consider the vacuum solutions qj1 = O  (i=l, 2) in (6). Then we have 

41 =q104-I 42 = q204-I. (7) 
This suggests that we take the Hirota bilinear transformation in the form 

where g(x, I), h(x, f) are complex functions andf(x, f) is a real function. 
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Substituting (8) into (9, we obtain 

f [(iD, + D:)g . f 1 ~ g[D?f. f- 2p (gg’ + Ih*)] = 0 

f [(iD.,+ D:)h . f ] - h[D: f. f -2jdgg’ +Ah*)] = O  

where the Hirota bilinear operators 0, and 0: are defined as 

Equations (9) a n  be decoupled as 

dig. f = O  d l h  . f = O  d z  f. f=gg-* + hh’ (11) 
where the bilinear operators dl and d2 are defined as 

1 
dl = (iD, + D:) d2 =- D:. 

2P 
In order to obtain the bright soliton solutions, we proceed in the standard way. For 

example, in order to find the one soliton solution, we assume 

g=xg1 h = x h l  ~ f = l + x y 2  (13) 

X :  dlgl ’  1=0 d l h l  ’ 1 =o (14) 

x 2 :  .A+&. I)=gig?+hth: (15) 

where x is an arbitrary parameter. Substituting (13) into (12) and then collecting the 
terms with same power in x, we obtain: 

x 3 :  dlgl .h=O d l h l  . f i = O  (16) 
and 

x 4  : d z f i  ‘ fi=o. 117) 

One can easily check that the solution, which is consistent with the system (l4-17), is 

gl =exp(m) hl=exp(m+4 

where 

q l = k , ( t + i k l x ) + ? p  (1% 

and in which k l ,  vio’ and 8 are all complex constants in general and the symbol * 
indicates complex conjugate. Using (18) in (13), after absorbing x the bright one- 
soliton solution can easily be worked out to be 

(20) 

(21) 

Etkln exp{i[(k;k+k:,)x+klr(f-2kltx) + &’I} 

&R exp{i[(k?n +k?dx+kdt  - 2kllx) + tlif’l} 

41 = 
coSh[kia(t-2kl1~) + <] 

42 = 
COSh[klR(t- 2kIIx) +<] 
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where 
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(2242-e) 

In the above, the suffices R and I denote the real and imaginary parts. We can also 
easily check from (226-c) that I ~ ~ 1 ~ + 1 ~ # =  (l/p). The onesoliton solutions (20)-(22) 
obtained here by the Hirota method exhibits exactly the same form as the soliton 
solution reported from the inverse scattering method 131. 

Next, in order to find the two-soliton solutions, we can assume 

g= E l +  x3g3 h=xhi+x3hs f= 1 +x%+x% (23) 

and proceed as before to obtain 

El=  exp( rl I) + exp( 72) 

h = a ( l ,  1 9  exp(m +rlO+a(l, 2*) exp(tll+rlf) 

hl =exp(~)Iexp(m) +exp(m)I 

+a@, I*) exp(m+ rl:) + 4 2 ,  2*) exp(r/2+ qf) 

g3=a(l, 2, I*) exp(m+ m+ t1?)+~(1,2,2*) exp(ql + OZ+ 7791 

h3=exp(~)b(l, 2, I*) exp(ltl+i2+tl:)+~(l,2,2*)ex~(ll,+~Z+tl:)l 

h = a ( l ,  5 I*, 2*) exp(m +1/2+ qf+@) 

qj=kj( t + ikjx) + 7:” j =  1,2 (25) 

P4U-f) 

where 

p(1+ exp( E+ E*))  p( 1 + exp(s+ E* ) )  
I 

o(i,j, k*) =u(i, j)u(i, k*)nG, k*) (27) 

and 

a(;, j, k*, f*)=u(i ,  j)u(i, k*)u(i, f*)uG, k*)u(j, [*)a&*, I*). (28) 

Here ki, $) and E are all complex constants. Using (24)-(28) in (23) and then in (S), 
the two-soliton solutions of (9) is obtained explicitly. In this connection, we note that 
special class of mixed type of solitary wave solutions of system (1) has been derived 
recently by following the Hirota approach 117,181 but these are not strict two-soliton 
solutions, as are those we have obtained. 
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In this way, proceeding further one can generalize the expression for g, h and f 
corresponding to the N-soliton solutions as 

2N 

where 

nj=k,xt+ikjx)+ 

V j + N =  ?.? k .  J + N  rk,? forj=l,2, .  . . , N 

j= 1.2,. . . ,2N 

,U [ 1 + eXp(E+ E*)] 

(ki+kiY 
fori= 1,2,. . . , N and j = N +  1, .  . . , 2 N  exp(d'3 = 

(k j  - kj)' 
fori=1,2 ,..., N and j = 1 , 2  ,..., N - - 

P[I + exP(& + E*)] 

i = N + l ,  ..., 2N and j = N + l ,  ..., 2N 

and 

N N 

when 1 + c ~ ; + N = . C  a; 

otherwise 
M l ( a ) =  i= I ,=1 

N N 

when 1 + aifN= ai 
Mda)  = i= I I= I 

otherwise 

N N 

l o  otherwise 

3. Dark solitons 

Now proceeding to the case of the normal GVD region, equations (1) for the parametric 
choice (2), where dark solitons occur, can be written as 
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Again using the transformation (8), the system (31) can be rewritten as 

R Radhakrishnan and M Lakshmanan 

f[(iDr-D?)g. f l  +g[D:f. f+2p(gg* +hh*)J = O  (320) 

f [(iD, - D:)h . f ]  + h[D:f. f+ 2p (gg* + hh*)]= 0. ( 3 ~  

Equations (32) can be decoupled into the set of bilinear equations as 

B1g. f = O  BIh. f = O  B2f. f=-2p(gg*+ hh*) (334 

where the bilinear operators Bl and B2 are defined as 

Bl = (i9-D: -A) Bz=(D:+A) 

in which 2. is constant to be determined. 

assume 
Next, in order to construct a dark one-soliton solution for the system (31), we 

g=go(l +xgd h=ho(l +xhl)  f= l+xfl. (34) 

%go. 1=0 BIhO. 1 =o -2p(gogO* +hoha*) a. (35) 

g o = T l  exp(iwI) ho= z2 exp(iwS (364 

Substituting (34) in (33) and then collecting the coefficients of xc0', we get 

In order to satisfy (35), we consider 

where 

yi=i,t- w$ i= 1,2 

I zii2+ I z2i2= - ( a m  
in which ll , 12, yjo) and ~ 6 ' )  are real constants and (zI , ZZ) are complex constants. 

Using (36) and the usual Hirota identities [13], the coefficients of x lead to 

,X?~(l ' f i+gl ' l)=o +&(I . fi+h, ' 1)=0 

%(I . fi +fi . 1) + 2 p  [z: (gi +g?) + T%h, +@)I = 0 
(38) 

where 

%?,=(iDX-2iI,D,-D:) j= 1,2. (39) 

gl =z, exp(51) ht=Zr,exp(51) fi=exp(51) (40) 

Cl = P 1 t - Q 1 x +  {p (41) 

One can easily check that equations (38) admit the following solutions, 

where 

in which PI, Q, and tio)', are real constants and (ZS, 2,) are complex constants, con- 
nected by the relations 

(42) 

(43) 



Bright and dark soliton solutions 2689 

and 

From (42) and (43), it can easily be seen that 1Z,(2=(Zf,1’= 1. Using (44) and (37), the 
expression for 1 ~ ~ 1 ~  and Ir$ can be obtained. It can also be checked that the equations 
corresponding to the coefficients of x 2  are identically satisfied for the solutions (40). 
Using (34), after absorbing x, the dark one-soliton solution can be derived as 

q2= -zzexp(iw2)[(1 +ZJ-( l -Zd tanh(C1/2)1. (45W 

Thus here we obtain the dark one-soliton solution (45) by following the Hirota tech- 
nique systematically. We also note that Kivshar and Turitsyn [8] have obtained a special 
form of the above dark one-soliton solution, using an ansatz, corresponding to the 
case Va=-irl&. V o = - i r 2 G  being real in equation (45). 

2 

For constructing dark two-soliton solutions we now assume 

g=ga(l f XXl +x2g2) h=L(1 +Xhl+,y2h2) f= 1 +xfl +x% (46) 
where go and ho are obtained here as in equation (36~) .  Using (36), (46) and the usual 
Hirota identities [13], we obtain the following set of equations from (33), corresponding 
to the different powers of x as 

X I :  Equations (38) 

x’: c81(1. fi+g1 . f ; + g 2 .  1)=0 FP,(l.fi+hi.f;+hz. 1)=0 

BA1 . A +f; . fi +fi 1) + 2/r[r:(g~ +g? +gl gf) + r%h2 + h: + hlhf) ]  =O 

B2(h . h+fi . f;) +2p[d(gI g? + g 2 g f )  + &h? +h2hf)l = 0 

(47) 

2: aI(gl.A+g2.f;)=O Wz(hl . f i+h2.  f ; ) = O  

(48) 

x4: V1g2 . f i=O %?2h2. f i = O  B 2 f i .  f i + 2 p ( r : g g ? +  rzh’h?) = O .  (49) 

One can easily find the solutions for the above set of equations as 

(50) 
gl = h  =Zi exp(51) +& exp( 52) 

~ ~ = ~ ~ = A I z Z I Z Z  exp(51+53 
h = exp( 51) + ~ x P ( ~ z )  

.L=AIz exp( 51 + 51) 
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Here the constants P, and d’ are real and we have restricted to the choice 1, =I2 in 
(36u) so that equations (47)-(49) are consistent. Now using (36), (46) and (50) in (8), 
the dark two-solitons can be found explicitly. 

In this way, by proceeding further the dark N-soliton solutions can he derived using 
the following equations in (8): 

R Rudhakrishnan and M Lokshtnanun 

11 { m - O . I  [ J - I  i<J 

N N 
g=rl exp(iv1) 1 exp 1 aj(&+iO,) + u,aja, 

where 

and 

for i, j= 1,2, . . . , N (55 )  

Here zI and r2 are again related to the separation constant A, as in (37). 
Finally, we show that for the second parametric choice (3) too, one can obtain dark 

solitons of the form (45). For this case, assuming C I = - C Z = - C  (say), a=-P=  y = 6  
(say), the system (I) becomes 

iql,-cql,,+26(Iq112-Iq213q1 = O  ( 5 6 4  
cq,, - 260 911 - 1 q213q2 =o (56b) 

Substituting again transformation (8) in (56) and then decoupling the resultant equa- 
tions, we obtain the bilinear equations 

I 1 g .  f=O 82h. f=O 8 3 f .  f=-(26/c)(gg*-hh*) (57) 

S,=(iD.,-cD:-r) J2= (iD,+ cD: +I-) 83=(~:+ (r/c)) (58) 

where 

in which r is a constant to be determined. 

then, proceeding as in the previous case, we obtain 
In order to find the one-soliton solution, we make the same ansatz (34) in (57) and 

(59Q) 
AI 
2 

8 2  

q1 = -- exp(i91)[(1 +ZI)--(l-Zd tanh(C1/2)1 

q2= --exp(-ih)[(l +Z2)-(1 - Z d  tanh(4‘1/2)1 (596) 2 
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where 

= m,t - (r - cm:)x + +y) j =  1,2 

tl = p l t - m l x + p  

. (62) 
-[cp: - i(m I + 2 ~ m , p ~ ) ] ~  -[cp:+i(ol +2cm2p1)I2 z: = Z, = 

c y + ( @ ,  2 P ~ + ( O I  +2nn2Pd2 
Here mj , m2, p I ,  wI , @, 4;') and ($') are all real constants and (AI ,  4) are complex 
constants, related by the relations 

1 ~ ~ 1 ~ - 1 ~ ~ 1 ~ =  - ( r / 2 6 )  (63) 
and 

(64) 
1 - -~ 1A1I2 - lAz12 

c'p:+(ml +2cmIp1)' c2p?+(01 +2cm2p1)' 46cp:' 

By proceeding further, as in the previous case, higher-order soliton solutions can also 
be given explicitly. To our knowledge the explicit soliton solutions of the system (56) 
have not been reported previously. 

4. Conclusioo 

In conclusion, we have explicitly obtained bright and dark N-solitons for the integrable 
cases of coupled NLS equations ( I )  describing two-mode propagation in optical fibre, 
using the Hirota method, derivable from P-analysis. The form of the bright one-soliton 
agrees with the result derivable from the inverse scattering analysis [3], and a special 
case (corresponding to a specific choice of the parameters) of our dark one-soliton 
agrees with that obtained by an ad hoc method [PI. We have also reported the explicit 
soliton solutions of the systems (1) corresponding to the parametric choice (3). 
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